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Abstract Dies and moulds represent an essential element in
manufacturing process and significantly influence the fabrica-
tion time and cost of the products. Moreover, the market
continuously asks the die manufacturers for products that have
better characteristics in terms of finishing, complexity or flex-
ibility within a reduction of the time to market and cost, so as to
follow the rapid changes in the product design. Therefore, in
order to give to the customer the best cost-performance solu-
tion, companies require accurate and reliable tools for die
manufacturing cost estimation both for commercial purposes
and for comparisons amongst different design solutions. In this
context, the paper proposes a method for manufacturing cost
estimation based on the definition of cost drivers. The method
was implemented using a database coming from a company
specialized in the production of dies for sheet forming and
rubber injection and it allowed to estimate a cost estimation
relationship (CER) function that is able to correlate the cost
drivers with the manufacturing cost of machining and assembly
phases. In particular, the method allowed to overcome the
limitations related to the available data as the company's own
storage criterion, unbalancing and high and non-uniform scat-
tering that do not allow use of the variance analysis technique.
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1 Introduction

Technological innovation, market internationalization and
customer requests have significantly reduced the product life

making them rapidly obsolete. Furthermore, the dynamic
competition scenario has led the companies to produce higher
quality products with lower lead time and costs.

Near net shape processes as injection moulding or casting
allow to respond to the market requests since they reduce the
number of steps in the manufacturing process, although they
involve dies and moulds whose cost can represent a high
percentage of the total product. In fact, assuming a die life of
250,000 injections, the die can cover up to the 45% of the cost
for an automotive moulded part [1]. Therefore, the die cost
estimation assumes a significant role in a competitive market.
Moreover, according to Freiman's curve (Fig. 1), a company
needs tools for a realistic and reliable estimation of the product
costs since both the under- and overestimations of the product
costs lead to negative consequences [2]. In particular, even if
the cost underestimation increases the probability to sell a
product, it leads to financial losses. Otherwise, its overestima-
tion causes an overallocation of resources and a loss in the
company competitiveness. In order to correct the errors in-
duced by bad estimations, the company can make changes to
the product and its manufacturing process, but this leads to a
more rapid allocation of resources and the freedom of action
decreases as their development proceeds (Fig. 2) [3]. It is
therefore fundamental for companies to have reliable tools
able to estimate the costs starting from the first phases of the
product development.

Companies got four different methods to develop cost
estimation models: intuitive, analogical, analytic and paramet-
ric (Table 1).

The intuitive methods are based on personal experience;
they are therefore subjected to a high variability according to
knowledge, skills and competence of the evaluator, and they
are difficult to be formalized in exploitable rules. On the other
hand, their use has less time and is cost consuming. Therefore,
they are adopted in small production companies where the
product development phases are not strictly formalized [5].
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The analogical methods compare a new product with the
existing ones using technical similarities and dissimilarities.
They require skilled people to associate the dissimilarities to
differences in the cost; therefore, they are partially subjected to
the limits of intuitive ones. Typically, they are adopted in the
first phases of the product life cycle (i.e. feasibility, definition
and development) and in after-sales services [5]. Some exam-
ples are the case-based reasoning (CBR) [6, 7] or the group
technology (GT) [7] methods. CBRmethods are fast, they can
use both quantitative and qualitative data and allow correcting
of the previous estimation errors, but they require a detailed
and organized database. In addition, the definition of compar-
ison indexes and their implementation are complex, therefore
they are not suitable for SMEs. GT methods are similar to
CBR, but they group the products in homogeneous families
having the same morphological or technological characteris-
tics. Therefore, the database can be organized according to the
product's existing classification.

The analytic methods are bottom-up approaches that identify
each elementary part or task of the manufacturing process, then
they estimate the costs of each task and sum them. They are
mainly used from the definition to after-sales phases [5].

Activity-based costing (ABC)models are examples of analytical
method application and they consider the resources required in
each activity (i.e. material, time, energy, customer service). In
general, ABCs result to be the most precise models for cost
estimations, especially when indirect costs are predominant,
since they are based on causal correlations between products
and costs and they can be applied to realities having a wide
variety of products or services. On the contrary, errors in direct
cost estimations can make ABCs very imprecise, making them
not suitable in realities where the final cost is mostly composed
by direct costs. Moreover, they require lots of detailed informa-
tion for the estimation of the activity costs. They spread in the
1980s in many manufacturing sectors such as automotive, aero-
space, naval and telecommunications [8–10].

Finally, the parametric methods use cost drivers (i.e. design
technical data as volume, weight, material or finishing) that
influence the final cost and correlate them using analytical
functions without knowing the specific details of the products.
These functions are known as cost estimation relationship
(CER) and are based on statistical approaches and interpola-
tions on normalized data. Since these methods are based on
aggregated data, they are adopted in product feasibility and
definition phases, wherein the product details have not been
defined [5]. Parametric models are characterized by ease of
use, do not require complex software for their implementation
and highlight the impacts of the cost drivers on the final cost.
Otherwise, the data normalization can be time consuming;
moreover, the use of aggregate data requires a good database
and it can show false dependences.

Methods application mostly depends on the availability of
product details, cost data and the time needed for their devel-
opment [5], therefore the few models which are present in
literature for die and moulds cost estimation are obtained by
joining the different methods. Semi-analytic models were
developed to estimate the CNC cutting costs [2] or to adapt
a CBR-based method [11], while models obtained from para-
metric and analytic methods were used to estimate the cost of
injection moulds in [12, 13]. In [14] the parametric and
analytic methods were used together to develop a model that
can be exploited to manufacture moulds for different applica-
tions. In general, they require both generic information (main
dimensions, volume of material to remove, surface finishing)
and details about the manufacturing process (cutting parame-
ters, accessories to be assembled, production time and time-
dependant costs). In particular, the latter make these models
not applicable in the preliminary phases of the products and
represent a limit for their use in quotations.

For these reasons, the paper presents a parametric model
based on multivariate regression and able to correlate aggregate
cost data with mould general characteristics. In particular, the
method will be implemented in machining and assembly costs
estimations to identify the most significant cost drivers. Then,
different CER functions will be estimated and compared in
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order to identify the best compromise between accuracy and
function complexity. It will be shown how the proposed model
can be implemented using a database containing both numerical
and non-numerical data that cannot be elaborated using vari-
ance analysis techniques. Moreover, it will result in adaptability
to the company's criteria used for die characteristics classifica-
tion. Finally, the comparison between predicted and historical
data will demonstrate the reliability of the proposed model and
its capability to overcome the high scattering of the initial data.

2 Cost model

The die manufacturing process is composed by many opera-
tions such as design, machining, non-conventional machining,
surface finishing, heat treatment, assembly and testing. Each
operation is characterized by its own cost and specific cost
drivers. The model here described is proposed both to identify

the significant cost drivers of each operation and to estimate a
CER function for manufacturing cost estimation.

In general, company historical data are characterized by a
non-homogeneous variance within the groups and they can be
non-numerical ones. Therefore, they can neither be analyzed
using variance techniques nor being directly used in numerical
functions like CER. Therefore, to overcome these limits, the
present model proposes a standard procedure for representing
non-numerical data using dummy variables. Moreover, it
evaluates the significance of the cost drivers in terms of their
contribution to the accuracy of the CER function. In particular,
this procedure is adaptable to the company criterion for non-
numerical data classification.

The following section will describe the model and show its
implementation using a database kindly provided by a com-
pany specialized in designing and manufacturing of dies and
moulds for sheet drawing, cold bulk forming and rubber
injection moulding.

Table 1 Summary of the cost estimation methods

Method Pros Cons Suitable phases

Intuitive Rapid Low precision All product
phasesSkilled evaluators

Difficult to be exploited

Analogical Estimations with less time and cost Difficult to define the concept of similitude Feasibility

Allows to correct errors thanks to continuous database
updating (CBR)

Requires a reliable database Definition

Limits in innovative products because of low
similarity products

Development

After sale

Analytic Accurate estimation High implementation cost for data collection and
organization which can overcome the pros

Definition

Development

Allows to allocate indirect costs Not suitable when direct costs are preponderant Production

Utilization

Parametric Rapid and easy to use Risk of uncertain results Feasibility
Low cost Reliable and solid database
Quantitative and qualitative parameters Definition
Highlights the relation between parameters and cost

Table 2 Database for assembly
costs in sheet bending dies
manufacturing (sheet bending
dies/assembly operation)

Information Data Type Values

Dimensions of the die (plant) Rectangular

Length (L) Range L = L1 ÷ L2

Width (W) Range W = W1 ÷ W2

Circular

Diameter (D) Max value D ≤ Dmax

Number of stages N Numerical 1–2

Required precision P Text Low–medium–high

Manufacturing difficulty MD Text Low–medium–high

Sheet loading system LS Text Automatic–manual–coil

Database entries 27 dies

Int J Adv Manuf Technol (2014) 70:1437–1444 1439



www.manaraa.com

2.1 Database description

The database used in the present study refers to dies used in
sheet and rubber forming. It contains information about their
applications, geometrical and morphological characteristics,
complexity, manufacturing processes and costs of the most
significant manufacturing operations. According to the data-
base, the cost of the dies for sheet bending and rubber injection
moulding applications is mainly due to the cutting and the
machining operations, respectively. Tables 2 and 3 report the
available information on the products. In particular, die di-
mensions (L , W, D ) are stored as ranges, while other details
are classified in different levels. Moreover, sheet forming dies
differ on the loading system (LS), which can require addition-
al features for the centring sheet (manual) or the feeding
system (coil), and they can be divided in stages for
the sheet deformation (N ). Injection moulding dies can
hold more cavities of the same part (N ), and they are
classified by the company using a high number of
arbitrary typologies (T ) according to the presence of
additional features or treatments as centring for assem-
bly, slider guides or surface treatments. In general, data
are stored in non-uniform ranges, and they are not
balanced amongst the levels, they have neither equal
variance nor normal distribution. Figure 3 reports the equal
variances test results for the assembly dataset where the low
p values in Levene's tests show the non-uniform variance
amongst the data. Similar results in Bartlett’s and F tests are
derived from the non-normality of the data.

Finally, data refer to a time lapse which does not require an
actualization of the costs (i.e. related to human labour cost or
materials price) and will be reported here as normalized
values.

2.2 Cost drivers definition

The ranges used to store the die dimensions data are not
unique but in general overlap each other; therefore, a reference

cost driver S was estimated according to (1). It aims to
represent the surface of the die on the parting surface. Average
values of L , W and D within the ranges were estimated
according to (2) where the single dimension is generally called

Table 3 Database for machining
costs in injection moulding
dies manufacturing (rubber
injection/machining operation)

Information Data Type Values

Dimensions of the die (plant) Rectangular

Length (L) Range L = L1 ÷ L2

Width (W) Range W = W1 ÷ W2

Circular

Diameter (D) Max value D ≤ Dmax

Number of cavities N Numerical 1–2–3–4–24

Required precision P Textual Low–medium–high

Manufacturing difficulty MD Textual Low–medium–high

Die typology T Textual 15 Different classifications

Database entries 69 dies
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Fig. 3 Equal variance tests on available data (assembly–sheet bending)
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B . A distinction between the ranges for smaller dies
(BZ[0;B2]) and wider dies (BZ[B1;B2]) was made assum-
ing, respectively, a linear increasing and decreasing fre-
quency of the values amongst the range limits. In fact,
in the former case, the B values close to 0 are less
frequent, while for the latter, it is more probably an
oversized die parting surface due to the dimensional
constrains in adapting the die to standard die holder.
These assumptions lead to the relationship between the
die surface and costs reported in Fig. 4:

S ¼ L⋅W rectangular surface

S ¼ π
4
D2 circular surface

(
ð1Þ

B ¼ 2

3
B2 B∈ 0;B2½ �

B ¼ B1 þ 1

3
B2−B1ð Þ B∈ B1;B2½ �

where B ¼ L;W ;D

8><
>: :

ð2Þ

In order to use the cost drivers in a CER function, it was
necessary to assign a numerical value to the textual cost
drivers. Therefore, they were stratified in groups according
to their textual value, and the average cost of each group was

estimated, normalized and assigned to the dummy variables.
In particular, the values 1 and 9 were assigned to the groups
having the lowest and highest average costs, respectively,
while other values were properly assigned to obtain a linear
correlation between the drivers and their average costs.
Figure 5 shows the procedure results for the precision cost
driver P in assembly and machining operations, and Fig. 6
reports the results obtained with the other drivers.

2.3 CER and cost drivers selection methodology

After the introduction of the dummy values, it was possible to
express the CER as their function and then evaluate their
importance. It was chosen to express CER as a linear combi-
nation of the cost drivers xk, their interactions xkx j and qua-
dratic forms xk

2 as reported in (3) where α0, α k, βkj and γ k are
the linear coefficients of the CER function. The linear corre-
lation between CER results and database values (R2) and the
standard deviation of the residuals (σe) were used to evaluate
the accuracy of the function. The former represents the aver-
age accuracy and the latter indicates how its error is
distributed.

The non-significant cost drivers were then identified and
removed to obtain a good compromise between accuracy and
simplicity. Since cost drivers scattering is not uniform (Tables 2
and 3), it is not possible to perform variance analysis; therefore,
a numerical approach was performed. In particular, the signifi-
cance of the cost drivers was evaluated considering their impact
on the accuracy (R2 and σe values):

CER ¼ α0 þ
X
k¼1

p

αkxk þ
Xp−1
k¼1

X
j¼kþ1

p

βkjxkx j þ
X
k¼1

p

γkx
2
k : ð3Þ

Table 4 reports the results of the multivariate interpolations
of the data using the cost drivers defined in the previous
section. CERAll refers to the regression obtained using all the
cost drivers and the data, CERRed is the function obtained
reducing the number of the cost drivers, and CER is the final
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function obtained removing the outliers fromCERRed. Figures 7
and 8 show and compare the results and the distribution of the
residuals.

3 Discussion

The described methodology was applied to a raw set of
data that could not be studied through variance analysis.
The limits were related to the presence of unbalanced
data, not uniform data scattering and storage. In partic-
ular, die dimensions were stored in non-uniform ranges,
and textual information were used to describe and clas-
sify the dies properties and data scattering was not
normal or uniform (Fig. 3).

Equations (1) and (2) were introduced to overcome the die
dimensions problem in estimating the S value that represents
the die parting surface. Figure 4 shows an almost linear
correlation between S and the assembly cost that could be
explained as a correlation of the die dimensions with the
number of parts to assemble or with handling and movement
times.With regard to the machining cost in sheet bending dies,
it has a no linear correlation and the data are more scattered.
Since in the CER function does not show any significant

quadratic influence of the S value (Table 4), the non-linear
behaviour can be an artefact of the high scattering and
unbalancing of data.

With regard to the dummy variables that were introduced to
quantify the textual cost drivers, they can have very close
values within the same cost driver (Fig. 6). In fact, in assembly
cost, LS assumes the values of 1 and 1.1 for the manual and
automatic loading systems, respectively. The difference can be
only numerical or correlated with the different characteristics
of the die (i.e. centring sheet devices), but in both cases it has a
low impact on the die cost. Therefore, this suggests choosing
between the two solutions according to other cost criteria (i.e.
based on purchasing, inventory or resource allocations) aside
from the customer's requests. Similar considerations about the
T cost driver (machining cost) lead to the conclusion that the
use of 15 different classifications for the die typology is
redundant. In fact, about half of the dummy variables are very
close to the same value (equal to 2).

With regard to the significance of the quadratic influences
of the cost drivers, they are attributed to numerical reasons
since all driver effects were linearized during the dummy
variable assignation. This represents an example of an unreal
model behaviour that can be derived from the use of a para-
metric method for cost modelling. Anyway, their use
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Fig. 6 Results of the dummy
values assignation to the cost
drivers

Table 4 Multivariate interpola-
tions of the data and CER
function

Assembly/sheet bending Machining/rubber injection

CERAll CERRed CER CERAll CERRed CER

R2 0.985 0.985 0.996 0.840 0.836 0.914

σe 0.0331 0.0331 0.0195 0.0638 0.0646 0.0458

Cost drivers

Main (linear) All All All S , P, MD, T

Interactions All S*N , S*MD, S*LS All P*T
N*MD, N*LS

P*LS

Main (quadratic) All P*P All P*P
MD*MD
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improves the results' accuracy and therefore, they were main-
tained in the CER function.

The overall results of the proposedmethod (Table 4, Figs. 7
and 8) show that it allowed to estimate two CER functions
characterized by a high accuracy for both the manufacturing
and machining operations. In fact, the comparison between
the results of the two models and the available cost data shows
a very high correlation (R2 values close to 1), and the error is
small and uniformly distributed as confirmed by the σe and
p values in residuals plots. Moreover, the method allowed the
use of data characterized by very high dispersion and non-

uniformity. Amongst the two CER functions, the machining
one shows a lower accuracy which can be derived from the
scattering in the S values (Fig. 4) or in the initial data.

4 Conclusions

In a market where products become obsolete in short time and
require low lead time, time to market and manufacturing cost,
it is important to correctly evaluate the product costs starting
from the preliminary phases of its production cycle.

Net shape technologies are able to respond to the market
requests, but the dies involved in the processes can represent a
significant part of the final product cost. Literature proposes
somemodels for estimating the manufacturing cost of dies but
they are mainly based on analytical approaches. Therefore,
they require detailed information that is available during the
advanced phases of the product and manufacturing process
development. Otherwise, parametric methods are suitable for
cost estimations in the preliminary phase since they require
few and generic cost drivers for their implementation.

For this reasons, the present study proposed a method
based on cost drivers to estimate the cost of the manufacturing
phases of the die.

The method was implemented using cost data related with
die manufacturing, leading to the definition of two CER
functions that are able to estimate the cost of assembly and
machining phases. In particular, a procedure was presented to
define a CER function using data that are organized according
to the company's own criterion and that cannot be analyzed
using variance analysis techniques. In fact, data were both
numerical and textual, and they were not balanced and were
characterized by a high and non-uniform variance. Therefore,
when introducing specific cost drivers, it is possible to use
information on the die's main dimensions that were stored
using non-uniform ranges.Moreover, a procedure to introduce
numerical dummy variables to substitute textual parameters
was shown.

The results of the methods showed a high accuracy in cost
estimations in spite of the high scattering of the initial data.
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The evaluation of the cost driver impacts on the final cost
suggested further strategies for both the drivers’ definition and
cost reduction.

Since the proposed model was implemented starting from
generic and raw data regarding the dies and using multivariate
regression techniques, it does not require a long-time analysis,
specific tools or resources for its implementation. Moreover, it
can be applied to different realities having their own data
storage criteria and can be used starting from the preliminary
phases of the die development or for quotations. Furthermore,
it can be implemented in conjunction with other manufactur-
ing policies of the company, to compare different solutions for
the product quality [15] or production rate [16] improvements.
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